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A model is proposed for the initiation of microfracture beneath sharp indenters. Using a 
simple approximation for the tensile stress distribution in the elastic/plastic indentation 
field, in conjunction with the principle of geometrical similarity, fracture mechanics 
procedures are applied to determine critical conditions for the growth of penny-like 
"median cracks" from sub-surface flaws. The analysis provides a functional relationship 
between the size of the critical flaw and the indentation load necessary to make this flaw 
extend. Initiation is well defined (unstable) only if the critical flaw lies within a certain 
size range; outside this range, large flaws can extend stably but small flaws can not extend 
at all. No flaws can extend below a characteristic minimum load, values of the 
indentation variables at this load accordingly providing useful threshold parameters. 
These quantities involve the intrinsic deformation/fracture parameters, hardness and 
toughness, in a fundamental way, thereby establishing a basis for materials selection in 
fracture-sensitive applications. 

1. Introduction 
The susceptibility of brittle materials to indenta- 
tion cracking involves two major questions [1]: 
in i t ia t ion ,  how and where in the indentation field 
the cracks start; propagat ion ,  once started, what 
paths do the cracks take, and what determines the 
extent of  their growth. Of these two aspects, that 
of propagation is relatively well understood 
[1 -3 ] ,  for it is in this stage of growt h that the 
fracture mechanics notion of a "well-developed" 
crack is most applicable. In the initiation stage the 
dependence of crack nucleation and formation 
processes on a multiplicity of structural and 
specimen history factors tends to introduce com- 
plications, among them the issue of flaw statistics. 
Nevertheless, with increasing attention being 
directed by the ceramics industry to such proper- 
ties as surface erosion and degradation, especially 
in high-impact situations, the need for an under- 
standing of contact-induced crack initiation is of 
paramount importance in preventative design. 
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Where the indenter in any given contact system 
can be considered "blunt" [1],such that the 
contact prior to well-developed fracture is per- 
fectly elastic, the mechanics of initiation are 
reasonably straightforward. This situation is 
realized when a hard sphere is used to produce 
Hertzian "cone cracks" in highly brittle surfaces 
[4]. On loading the indenter, pre-present flaws on 
the specimen surface experience an ever-increasing 
tensile stress outside the expanding contact circle, 
until one such flaw becomes critical and develops 
spontaneously into the cone configuration. How- 
ever, because this critical event involves over- 
coming an energy barrier, the threshold condition 
is found to be independent of any flaw character- 
istics, provided the density of flaws is sufficiently 
high. If  the distribution of flaws becomes sparse, 
so that the contact has to continue expanding in 
its search for a suitable starting centre, the 
threshold load tends to increase and show varia- 
bility: flaw statistics then enter the problem. 
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Where, on the other hand, the contact system is 
"sharp", such that the contact prior to fracture is 
"plastic"*, the mechanics of initiation become 
more obscure [5]. Yet it is the sharp indenter 
which is usually by far the more dangerous, with 
threshold loads typically some orders of magni- 
tude less than that required for cone crack forma- 
tion. The pyramidal and conical indenters used in 
routine hardness testing most conveniently idealize 
this second category of indentation fracture, 
although even a hard sphere is capable of precursor 
plastic penetration in less brittle surfaces [2, 3]. 
In this case the intensity of the stress field remains 
independent of applied load (except for the 
increase due to work-hardening with spherical 
indenters, where the principle of geometrical simi- 
larity does not apply), so that the existence of a 
threshold would appear to be necessarily connec- 
ted with a critical spatial factor. Empirical evi- 
dence points to the operation of sub-surface crack 
sources, in the vicinity of the elastic/plastic bound- 
ary where tensile stresses concentrate; these form 
into penny-shaped "median cracks", as in Fig. 1, 
on any favourable symmetry planes through the 
indentation. At least, this is so for reasonably well 
finished surfaces: a rough finish may lead to the 
premature development of shallow surface "radial 
cracks" extending outward from the impression, 
particularly with spherical indenters [2, 3]. Ulti- 
mately, at higher loads, the median cracks tend to 
merge with any radial cracks to form well-developed 
half-penny configurations centred on the contact 
point [6]. One further development occurs on 
unloading, where "lateral cracks", driven by a 
residual, elastic/plastic mismatch stress field, 
extend sideways and toward the specimen surface 
[5]. While all of these crack types contribute to 
the final damage pattern, it is the median crack 
which is of greatest concern in the context of 
preventative design, for it is the onset of this mode 
which limits the indentation load that may be sus- 
tained by any given brittle surface without degra- 
dation (no matter how well prepared the surface 
may be). 

Accordingly, this paper seeks to establish a 
working model for predicting the onset of median 
cracking beneath sharp indenters. Given that the 
initiation process is controlled by the elastic] 
plastic indentation field, we might intuitively 
expect intrinsic deformation/fracture parameters, 

Figure 1 In situ photograph of Vickers diamond pyramid 
indentation in soda-lime glass, showing weU-developed 
median crack at load 250 N. Side view in transmitted 
light, width of field 11 mm. (After [5] .) 

notably hardness and toughness, to play an impor- 
tant part in the formulation [7, 8]. In showing 
this indeed to be the case, the present model lays 
down a convenient basis for materials selection. 

2. The  model  
The proposed model is illustrated in Fig. 2. A 
sharp indenter at load P produces a plastic 
impression of characteristic dimension a, from 
which one obtains the hardness, 

H = P/arra 2 -~ const., (1) 

with o~ a dimensionless factor determined by 
indenter geometry. The elastic/plastic field in the 
general indentation problem is extremely complex, 
but Hill's solution for a spherical cavity under 
internal pressure illustrates the essential features of 
the stress distribution. The maximum tensile stress 
occurs at the elastic/plastic interface, with fall-off 
within the plastic zone to a negative value at the 
indenter/specimen contact and within the sur- 
rounding elastic region to zero remote from the 
contact [9]. The features pertinent to the fracture 
problem are most simply approximated by a linear 
profile, as shown in Fig. 2. Here Clna is the 
maximum tension at the interface, depth d below 
the surface, and b is the spatial extent over which 
the tensile component of the field acts. In so far as 
the concept of geometrical similitude may be 
applied to the sharp-indenter field [10], H and a 
constitute convenient scaling parameters. The peak 
stress must scale directly with the indentation 

*The term "plastic" being used loosely here to represent any irreversible deformation process, including densification. 
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initiation in elastic/plastic inden- 
tation field. Nucleation centre is 
located in region of maximum 
tension, as base of "plastic" zone 
(shaded). Distribution of normal 
stress along load axis shown 
according to Hill's elastic/plastic 
solution (broken curve) and 
present approximation (full 
curve). 

pressure, as determined by the material hardness, 
so that 

am = OH ~. const., (2) 

with 0 a dimensionless factor: hardness is thus the 
key scaling parameter that establishes the intensity 
of  the stress. The spatial extent of  the field must 
scale with the indentation size, as determined by 
the characteristic contact dimension a (or d), 
giving 

b = rTa = (~2/omH)x/=Pln, (3) 

with r/another dimensionless factor. 
Now we consider the initiation of  fracture 

within the stress field. For this purpose we investi- 
gate the mechanics of  a median-plane penny crack 
of  radius c centred on the load axis at the base of  
the elastic/plastic interface. In line with the linear 
distribution proposed above, the stresses over the 
prospective crack plane are taken to be symmetri- 
cal about the penny axis according to the radial 
function 

o(r) = ore ( I - - r /b )  (r<~b) (4a) 

o(r) = 0 (r>~b). (4b) 

More complex stress fields that include the angular 
dependence of  the stress about the elastic/plastic 
interface, the compressive stress in the plastic zone 
at r > b etc., can be used, but such refinements 
yield essentially the same final result as that 
obtained using the much simpler field represented 
by Equation 4. The present description requires 
the pre-existence of  nucleation centres within the 
bulk of  the specimen, such that if one favourably 
located centre does not develop into a full-scale 

median crack the expanding plastic zone will 
engulf this nucleus and "search" for another. 
While a more deeply located flaw would not 
experience a greater maximum in tensile stress, 
Equation 2, it would certainly experience a greater 
overall tension averaged over its length, Equation 
3. Our aim is to determine the loading conditions 
at which the "dominant flaw" becomes critical. 

This is most readily done by evaluating the 
stress intensity factor for axially symmetric penny 
cracks [11],  

f; K = [2/(rrc) 1/2] ro(r)dr/(c2--r2)  in .  (5) 

Substitution of  Equation 4 into this integral gives 

K = 2Om(e/Tr) 1/2 [1 -- �89 -- b2/c2) in 

- -  �89 sin -1 (b/c)], (c >~ b), (5a) 

K = 2C~m(e/rr)ln(1 -- rrc/4b), (c <. b).(5b) 

Invoking the condition for Griffith equilibrium, 

K = Kc, (6) 

and using Equations 2 and 3 to eliminate em and 
b, Equations 5 lead to critical relations for crack 
extension: in reduced notation we obtain 

1 = c s 1 8 9  ~ / ~ 2 ) 1 / 2  

_ �89 sin-l(~ln/ff)], (cg > ~ln), 
(7a) 

1 = egl/2(1 --Treg14~l12), (eg<~ ojx/2) (7b) 

where we have made the convenient substitutions 

rs = (20H/rran Xc)2 c (8a) 

2 =  (16r1204Ha/arr3Kc4)P. (Sb) 
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Figure 3 Plot of equilibrium function ~ (c~), showing 
development of flaw into full-scale crack at threshold 
(arrow). 

The formulation thus uniquely relates equilibrium 
crack dimensions to the indentation load. 

Accordingly, in solving Equation 7 for the 
"universal" function ~ ( , ~ ) , w e  lay down the 
basis for tracing the evolution of the initiation 
process. The plot of  Fig. 3 indicates the sequence 
of events for a dominant flaw of "effective" initial 
dimension ~gf. Upon loading the indenter, the 
flaw experiences an increasing driving force until, 
at the load where the line ~ f  = const, intersects 
the equilibrium curve, the Griffith condition for 
extension becomes satisfied. The flaw is then free 
to develop into a median crack. Noting that the 

(off) curve has a minimum at ( ~ * ,  cg *), where 

cg* = 2.250 (9a) 

~ *  = 28.11, (9b) 

and an asymptote to (go = const., where 

~a0 = 1, (10) 

we may identify three distinct regions of  stability 
in the flaw size: 

(i) ~ f  ~< ego (small flaws): It is impossible for 
the line tiff = const, to intersect the equilibrium 
curve, so the flaw can never expand. Physically, 
this situation arises because of  the limitation on 
the stress level imposed by the hardness value, 
Equation 2, so that a small flaw, even with the 
maximum tensile stress distributed over its entire 
area (i.e. at b --~~ p--~o, Equation 3), simply can- 
not achieve the critical stress intensity factor. 

(ii) ~f0 < ~gf < ~,* (intermediate flaws): The 
line cgf = const, now intersects the equilibrium 
curve on the branch of negative slope, i.e. the 
unstable branch, such that development into the 
median crack is spontaneous at P = const. It is this 
case which is represented in Fig. 3, and which 
corresponds to the empirically observed threshold 
condition. While the total stress fall-off over the 
radius of  the crack at critical loading increases as 
the flaw size within this range, the system is never 
too far removed from the highly unstable uniform- 
tension configuration [ 12]. 

(iii) cg * ~< cgf (large flaws): intersection occurs 
on the branch of  positive slope, so further devel- 
opment  can only take place by stable growth along 
the equilibrium curve at increasing load. The 
appearance of  a median crack is then a continuous 
rather than abrupt event. Total stress fall-off over 
the crack is now severe, so that the critical system 
more closely resembles a highly stable centre- 
loading configuration [12].  

It is clear from this description that crack 
initiation will depend to a large extent on the dis- 
tribution in effective size and location of potential 
starting flaws. In the absence of  large flaws, the 
indentation will expand until a suitable inter- 
mediate flaw is encountered and taken to 
threshold before being engulfed within the plastic 
zone. However, while this must inevitably lead to 
variability in the critical loading, it is clear from 
Fig. 3 that no flaw, regardless of  its favourable size 
or location, may extend, either unstably or stably, 
at indentation loads b e l o w ~ * .  Thus the minimum 
in the equilibrium curve takes on a special signifi- 
cance, in that it represents a lower bound to the 
requirements for initiation. At this point on the 
curve the indentation variables are obtained in 
absolute terms from Equations 8 and 9: 

C* = (1.767/02) (Ke/H) 2 (1 la)  

P* = (54.47a/~204) (Kc/H)3Ke. (1 lb)  

3. Discussion 
The model described above, while ostensibly 
dealing with crack initiation processes, makes no 
assumptions about the nature of  starting flaws 
other than that they exist and have some "effec- 
tive" dimension: in seeking to establish a well- 
defined crack system we have concentrated on the 
formation, as distinct from the nucleation, of  
indentation microcracks [ 1 2 ] . I t  is nevertheless 
apparent that appropriate refinement of  micro- 
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T A B L E I Parameters (approx.) o f indentation fracture initiation 

Material Comments Deformation/fracture 
parameters 

Threshold parameters 

H (GPa) Kc(MPa m 1/2 ) P*(N)' c*(~m) 

WC Co-bonded 18.6 
NaC1 monocrystal 0.24 
Si~ N+ hot-pressed 16 
A12 03 lucalox 12 
ZnS vapour deposited 1.9 
SiC hot-pressed 19 
MgF 2 hot-pressed 5.8 
MgO hot-pressed 9.2 
SiO 2 glass 6.2 
Si monocrystal 10 

13 
0.4 
5 
4 
1.0 
4 
0.9 
1.2 
0.7 
0.6 

96 22 
40 120 

3 4 
3 5 
3 12 
0.8 2 
0.07 1.1 
0.06 0.8 
0.02 0.6 
0.003 0.2 

structure (e.g. refinement of  grain size in poly- 
crystals, reduction of  pile-up length in mono- 
crystals, elimination of  micro-inhomogeneities in 
glasses) could be an impor tant  factor in the design 

and manufacture of  ultra-high strength ceramics 
for contact  situations. In the context  of  inden- 
tation fracture, the micro-mechanics of  nucleation 
processes remains a relatively unexplored area of  
study. 

Of greater interest than flaw characteristics, 
however, is the role of  the basic deformation/  
fracture parameters,  hardness and toughness, in 
controlling the intrinsic resistance to the onset of  
contact-induced cracking. For  the purpose of  
materials selection, one would aim to maximize 

the quantities P* and c*; i.e. one would look for 
materials of  high toughness, low hardness, as per 
Equations 11. The importance of  these two basic 
material parameters in determining the question of  
"bri t t leness" has been previously noted in other 
aspects of  the indentat ion fracture problem 
[5, 7, 8] .  Because of  the simplifying assumptions 
embodied in the model  of  Fig. 2, absolute evalua- 

tions of  P* and c* can hardly be expected to have 
an accuracy of  much bet ter  than an order of  mag- 
nitude; on the other hand, since all the inaccuracy 
in the theory is contained in the constants in 
Equations t l ,  relative values will be l imited only 
by experimental  uncertainties in H and K c. Table I 
accordingly lists the appropriate quantities for a 
selection of  solids, using a = 2/1r (Vickers diamond 
pyramid indenter,  with a measured as impression 
diagonal), 0 ~, 0.2 and rl ~ 1 (typical intensity and 
extent  of  tensile field). Those solids toward the 

upper port ion of  the table would appear to be 
favoured candidates for applications in which the 
onset of  cracking means an immediate,  significant 
degradation in properties.  Of course, once full- 
scale cracking has begun it is the toughness which 
becomes the optimizing parameter.  

Acknowledgements 
This work was funded by the Australian Research 
Grants Committee and the U.S. Office of  Naval 

Research under contract  No. N00014-75-C-0669. 

References 
1. B. R. LAWN and T. R. WILSHAW, J. Mater. Sei. 10 

(1975) 1049. 
2. A. G. EVANS and T. R. WILSHAW, Aeta. Met. 24 

(1976) 939. 
3. Idem, J. Mater. SeL, 12 (1977) 97. 
4. F. C. FRANK and B. R. LAWN, Proc. Roy.  Soe. 

Lond. A299 (1967) 291. 
5. B. R. LAWN and M. V. SWAIN, or. Mater. Sei. 10 

(1975) 113. 
6. B. R. LAWN and E. R. FULLER, ibid. 10 (1975) 

2016. 
7. B. R. LAWN, T. JENSEN and A. ARORA, ibid. 

11 (1976) 575. 
8. A.G.  EVANS and E. A. CHARLES, J. Amer. Ceram. 

Soe. 59 (1976) 371. 
9. R. HILL, "Plasticity" (Clarendon Press, Oxford, 

1950) p. 97. 
10. D. TABOR, "The Hardness of Metals" (Clarendon 

Press, Oxford, 1951). 
11. G. C. SIH, "Handbook of Stress Intensity Factors" 

(Lehigh University Press, Lehigh, 1973). 
12. B. R. LAWN and T. R. WILSHAW, "Fracture of 

Brittle Solids" (Cambridge University Press, 
Cambridge, 1975) Chs. 1-3. 

Received 16 March and accepted 4 April 1977. 

2199 


